Assessing Emissions Impacts of Automated Vehicles

George Noel, Erin Reed, Scott Smith, Hannah Rakoff, Stephen Bransfield

109th Air & Waste Management Association Annual Conference and Exhibition Paper # 1105 June 21st, 2016

Voipe The National Transportation Systems Center Advancing transportation innovation for the public good

U.S. Department of Transportation Office of the Secretary of Transportation John A. Volpe National Transportation Systems Center

Background

- Emissions analysis is part of 'Benefits Estimation of Automated Vehicles Operations' project being conducted by the Volpe Center
 - Project Sponsored by FHWA Joint Program Office (JPO)
 - Project focuses on modeling several areas of vehicle automation
 - \circ Safety
 - o User Response
 - Vehicle Operations
 - Energy / Emissions

Background

Project is divided into 2 phases

- Phase 1, 6 months, completed in March 2016
 - $_{\odot}$ White paper and prototype model of car following
- Phase 2, 2 years
 - Add lane changes, merges and intersection gap acceptance to the model.
 - Deliver a model that a region (Metropolitan Planning Organization or city) could use to analyze the transportation system impacts of vehicles with automation applications.

Framework Elements

Related Projects

- Technical Program Management for Vehicle Automation and CV Safety
- □ Workzone modeling (driver behavior modeling)
- Automation field tests
 - Glidepath
 - Eco-signals PATH / UC Riverside
 - CAMP CACC
 - Truck platooning PATH/Caltrans
 - Truck platooning Auburn
 - Internal Volpe CACC testing
 - Speed harmonization field tests, lane change merge
- Using Electronic Emergency Brake Light Safety Impact Methodology (EEBL SIM) Tool to estimate Prob(crash) for platooning

Goal: Estimate the crash avoidance effectiveness and potential safety benefits of automated vehicles

Current objectives:

- 1. Describe the driving conflicts on freeways experienced by passenger vehicles equipped with adaptive cruise control and crash warning applications
- 2. Establish a baseline of driving conflict exposure under different driving conditions (automation levels 0-1) for estimating the crash avoidance effectiveness of higher vehicle automation levels
- 3. Provide statistics on the availability of lane tracking information and vehicle detection during driving conflicts in different driving conditions

User Response

Automation in a Transportation Modeling Framework

Vehicle Operations

□ Car following

- Direct effect on lane capacity for an uninterrupted facility
- Human driver: minimum safe headway, speed variation
- Autonomous: less random speed variation due to driver distraction
- Connected / automated: with real-time information from lead vehicle(s), may enable reduced headways
- Gap acceptance
 - Effect on intersection capacity
 - Human driver: depends on perception and judgment
 - Autonomous: may have less variability than humans
 - Connected / automated: possibility of cooperation with other vehicles
- Interruptions to traffic flow
 - Effect on link and intersection capacity
 - Connected / automated: possibility of cooperation with infrastructure (Glidepath), and with other vehicles to reduce interruptions

Modeling Approach

- Develop standardized road network and simulation parameters so performance of automation technology can be directly compared.
- Run simulations on externally developed .dll files to demonstrate that our framework can accommodate external inputs.
- Define a robust and repeatable process to import VISSIM data to MOVES.

Initial Traffic Simulation Modeling

Network and simulation parameters

- By modifying VISSIM's car following logic, identified minimum time step and time sample ranges for evaluation purposes (10 Hz and 900-4500 sec).
- Developed fundamental diagrams for 2 different car following approaches:
 - VISSIM's Weidemann 99 default parameters
 - Modified Weidemann 99 after removing "unconscious oscillations" a simple ACC approximation

* Driving Behavior Parameter Set			X			
No.: 2 Name: Right-side rule (motorized)						
Following Lane Change Lateral Signal Control						
Look ahead distance min.: 0.00 ft	Car following model Wiedemann 99		-			
max.: 820.21 ft	Model parameters					
2 Observed vehicles	CC0 (Standstill Distance):	4.92	ft			
Look back distance	CC1 (Headway Time):	0.90	s			
min.: 0.00 ft max.: 492.13 ft Temporary lack of attention Duration: 0.00 s Probability: 0.00 %	 CC2 ('Following' Variation): CC3 (Threshold for Entering 'Following'): CC4 (Negative 'Following' Threshold): CC5 (Positive 'Following' Threshold): CC6 (Speed dependency of Oscillation): CC7 (Oscillation Acceleration): CC8 (Standstill Acceleration): CC9 (Acceleration with 50 mph): 	13.12 -8.00 -0.35 0.35 11.44 0.82 11.48 4.92	ft ft/s2 ft/s2 ft/s2			
Standstill distance for 1.64 ft						
	ОК	0	Cancel			

Initial Traffic Simulation Modeling Results

- One lane 2 mile long network.
- The small (~5%) improvement in capacity at 100% market penetration is consistent with prior studies.
- This data was exported to MOVES for analysis

Analysis of External Driver Models

- Have received 2 ACC .dll files from Turner Fairbank Highway Research Center.
 - MIXIC (Microscopic model for Simulation of Intelligent Cruise Control)
 - IDM (Intelligent Driver Model)
- Reviewed and summarized the source code to understand the model logic
- Ran simulations on a 3 mile long, 2 lane freeway network
- Our initial findings on the no ACC and IDM are consistent with previous findings

Next step is to work on the CACC model obtained developed at Turner Fairbank

Energy and Environment

 Estimate fuel consumption and emission impacts for multiple vehicle automation scenarios

- Fuel Consumption
- Criteria Pollutants (CO, NOx, PM₁₀, PM_{2.5}, and SO₂)
- Other Pollutants (HC and VOCs)
- GHGs (CO₂ and other greenhouse gases)

Key Framework items for fuel and emissions modeling

- Ability to post process vehicle operations modeling results for use with MOVES
 - $_{\circ}~$ Process VISSIM output into Operating Mode Distributions
- Executing MOVES2014a with Operating Mode Distributions
 - Operating Modes are "modes" of vehicle activity that have distinct emissions rates.

Energy/Environment Approach

MOVES Operating Mode Distributions

□ Vehicle Specific Power (VSP)

$$VSP_t = \frac{Av_t + Bv_t^2 + Cv_t^3 + mv_ta_t}{m}$$

In which,

- A = tire rolling resistance term (KW sec/m)
- B = rotational resistance term (KW sec/m²)
- C = aerodynamic drag term (KW sec/m³)
- v_t = velocity at time, t (m/s)
- a_t = acceleration at time, t (m/s²)

m = mass (kg)

MOVES Operating Mode Distribution

Operating Mode Bin	Operation Mode Description	Vehicle-Specific Power (VSP _t , kW/metric ton)	Vehicle Speed (v _t , mph)	Vehicle Acceleration (a _t , mph/sec)
0	Deceleration/Braking			$a_t \le -2.0 \text{ OR}$ ($a_t < -1.0 \text{ AND}$ $a_{t-1} < -1.0 \text{ AND}$ $a_{t-2} < -1.0$)
1	Idle		$-1.0 \le v_t < 1.0$	
11	Coast	VSP _t < 0	$1 \le v_t < 25$	
12	Cruise/Acceleration	$0 \le VSP_t < 3$	$1 \le v_t < 25$	
13	Cruise/Acceleration	$3 \le VSP_t < 6$	$1 \le v_t < 25$	
14	Cruise/Acceleration	$6 \le VSP_t < 9$	$1 \le v_t < 25$	
15	Cruise/Acceleration	$9 \le VSP_t < 12$	$1 \le v_t < 25$	
16	Cruise/Acceleration	$12 \le VSP_t$	$1 \le v_t < 25$	
21	Coast	VSP _t < 0	$25 \le v_t < 50$	
22	Cruise/Acceleration	$0 \le VSP_t < 3$	$25 \le v_t < 50$	
23	Cruise/Acceleration	$3 \le VSP_t < 6$	$25 \le v_t < 50$	
24	Cruise/Acceleration	$6 \le VSP_t < 9$	$25 \le v_t < 50$	
25	Cruise/Acceleration	$9 \le VSP_t < 12$	$25 \le v_t < 50$	
27	Cruise/Acceleration	$12 \le VSP_t < 18$	$25 \le v_t < 50$	
28	Cruise/Acceleration	$18 \le VSP_t < 24$	$25 \le v_t < 50$	
29	Cruise/Acceleration	$24 \le VSP_t < 30$	$25 \le v_t < 50$	
30	Cruise/Acceleration	$30 \le VSP_t$	$25 \le v_t < 50$	
33	Cruise/Acceleration	VSP _t < 6	$50 \le v_t$	
35	Cruise/Acceleration	$6 \le VSP_t < 12$	$50 \le v_t$	
37	Cruise/Acceleration	$12 \le VSP_t < 18$	50 ≤ v _t	
38	Cruise/Acceleration	$18 \le VSP_t < 24$	50 ≤ v _t	
39	Cruise/Acceleration	$24 \le VSP_t < 30$	50 ≤ v _t	
40	Cruise/Acceleration	$30 \le VSP_t$	50 ≤ v _t	

Initial Emissions Modeling

- Developed a MATLAB script for creating operating mode distribution from VISSIM output
- Simple Scenario: Fully automated vs. Non-automated at two capacities
- Operating Mode Distributions from Simple Scenario:

Initial Emission Modeling Results

18 16 14 Energy Consumed (Million BTU) 12 10 8 6 4 2 0 Humans 1500 veh/hr Automated 1500 veh/hr Humans 3000 veh/hr Automated 3000 veh/hr

Energy Consumption

Emissions

Next Steps

- Scaling up the methodology for more complex scenarios
 - Utilize Python and SQL to handle larger datasets
- As we create a framework for more complex systems, it is critical to specify how to appropriately model a microsimulation layout with MOVES
- Will need to manipulate MOVES VSP parameters
 - Aerodynamic Drag
- Develop scenarios that incorporate other emissions processes
 - Vehicle starts
 - Hotelling and APU Usage

For More Information

www.its.dot.gov

Project Manger: Scott Smith US DOT / Volpe Center <u>Scott.Smith@dot.gov</u> 617-494-2588

Program Manager: Kevin Dopart US DOT / ITS JPO <u>Kevin.Dopart@dot.gov</u> 202-366-5004

Office of the Assistant Secretary for Research and Technology (OST-R) • U.S. Department of Transportation (US DOT) = 1200 New Jersey Avenue, SE • Washington, DC 20590 • 800.853.1351 • E-mail OST-R

Accessibility | Disclaimer | Fast Lane | FedStats | Freedom of Information Act | No FEAR Act | OIG Hotline | Privacy Policy | USA.gov | White House

Plug-ins: PDF Reader | Flash Player | Excel Viewer | PowerPoint Viewer | Word Viewer | WinZip

OST-R's privacy policies and procedures do not necessarily apply to external web sites. We suggest contacting these altes directly for information on their data collection and distribution policies.

Thank You!

Questions?

George Noel

Email: george.noel@dot.gov

